Как сделать солнечную батарею в домашних условиях


В современном мире сложно представить себе существование без электрической энергии. Освещение, отопление, связь и прочие радости комфортной жизни напрямую зависят от неё. Это заставляет искать альтернативные и независимые источники, одним из которых является солнце. Эта область энергетики пока ещё не слишком развита, и промышленные установки стоят недёшево. Выходом станет изготовление солнечных батарей своими руками.

Что такое солнечная батарея

Солнечная батарея представляет собой панель, состоящую из соединённых между собой фотоэлементов. Она напрямую преобразует солнечную энергию в электрический ток. В зависимости от устройства системы, электрическая энергия аккумулируется или сразу идёт на энергообеспечение зданий, механизмов и приборов.

Простейшими фотоэлементами пользовался почти каждый. Они встроены в калькуляторы, фонарики, аккумуляторы для подзарядки электронных гаджетов, садовые фонарики. Но этим использование не ограничивается. Существуют электромобили с подзарядкой от солнца, в космосе это один из основных источников энергии.


В странах с большим количеством солнечных дней батареи устанавливаются на крышах домов и используются для отопления и нагрева воды. Этот вид называют коллекторами, они преобразуют энергию солнца в тепловую.

Нередко электроснабжение целых городов и посёлков происходит только за счёт этого вида энергии. Строятся электростанции, работающие на солнечной радиации. Особенное распространение они получили в США, Японии и Германии.

Устройство

В основе устройства солнечной батареи лежит явление фотоэффекта, открытое в ХХ веке А.Энштейном. Выяснилось, что в некоторых веществах под действием солнечного света или других веществ, происходит отрыв заряженных частиц. Это открытие и привело в 1953 году к созданию первого гелиомодуля.

Материалом для изготовления элементов служат полупроводники — совмещённые пластины из двух материалов с разной проводимостью. Чаще всего для их изготовления используется поликристаллический или монокристаллический кремний с различными добавками.

Под действием солнечного света в одном слое появляется избыток электронов, а в другом — их недостаток. «Лишние» электроны переходят в область с их недостатком, этот процесс получил название р-n переход.


Между материалами, образующими избыток и недостаток электронов, помещён барьерный слой, препятствующий переходу. Это необходимо для того, чтобы ток возникал только при наличии источника потребления энергии.

Попадающие на поверхность фотоны света выбивают электроны и снабжают их необходимой энергией для преодоления барьерного слоя. Отрицательные электроны переходят из р-проводника в n-проводник, а положительные совершают обратный путь.

За счёт разной проводимости материалов полупроводника удаётся создать направленное движение электронов. Таким образом возникает электрический ток.

Элементы последовательно соединены между собой, образуя панель большей или меньшей площади, которую и называют батареей. Такие батареи можно напрямую подключать к источнику потребления. Но поскольку солнечная активность в течение суток меняется, а ночью прекращается вообще, используют аккумуляторы, накапливающие энергию на время отсутствия солнечного света.

Необходимой составляющей в этом случае является контроллер. Он служит для контроля за зарядкой аккумулятора и отключает батарею при полном заряде.

Вырабатываемый солнечной батареей ток является постоянным, для использования его необходимо преобразовать в переменный. Для этого служит инвертор.


Поскольку все электрические приборы, потребляющие энергию, рассчитаны на определённое напряжение, в системе необходим стабилизатор, обеспечивающий нужные значения.

Только при наличии всех этих составляющих можно получить функциональную систему, снабжающую энергией потребители и не грозящую вывести их из строя.

Виды элементов для модулей

Существует три основных типа гелиопанелей: поликристаллические, монокристаллические и тонкоплёночные. Чаще всего все три типа производятся из кремния с различными добавками. Используются также теллурид кадмия и селенид меди-кадмия, особенно для производства плёночных панелей. Эти добавки способствуют увеличению эффективности ячеек на 5—10 %.

Кристаллические

Самые популярные — монокристаллические. Они изготавливаются из монокристаллов, имеют равномерную структуру. Такие пластины имеют форму многоугольника или прямоугольника со срезанными углами.

Батарея, собранная из монокристаллических элементов, имеет большую по сравнению с другими видами производительность, её КПД 13 %. Она легка и компактна, не боится небольшого изгиба, может быть установлена на неровную поверхность, срок службы 30 лет.


К недостаткам можно отнести значительное снижение мощности при облачности, вплоть до полного прекращения выработки энергии. Это же происходит и при затемнении, ночью батарея работать не будет.

Поликристаллические производятся методом литья, имеют прямоугольную или квадратную форму и неоднородную структуру. Эффективность их ниже монокристаллических, КПД всего 7—9 %, но падение выработки при облачности, запылении или в сумерках несущественно.

Поэтому их применяют при устройстве уличного освещения, их же чаще используют самоделкины. Стоимость таких пластин ниже монокристаллов, срок эксплуатации 20 лет.

Плёночные

Токкоплёночные или гибкие элементы изготавливаются из аморфной формы кремния. Гибкость панелей делает их мобильными, свернув рулоном их можно взять с собой в путешествия и иметь независимый источник энергии в любом месте. Это же свойство позволяет монтировать их на криволинейных поверхностях.

По эффективности плёночные панели уступают кристаллическим в два раза, для производства одинакового количества необходима двойная площадь батареи. Да и долговечностью плёнка не отличается — в первые 2 года их эффективность падает на 20—40 %.

Но при облачности или затемнении выработка энергии сокращается всего на 10—15 %. Несомненным достоинством можно считать их относительную дешевизну.

Из чего можно сделать гелиопанель в домашних условиях


Несмотря на все преимущества батарей промышленного производства, главным их недостатком является высокая цена. Этой неприятности можно избежать, изготовив простейшую панель своими руками из подручных материалов.

Из диодов

Диод — это кристалл в пластиковом корпусе, выступающем в роли линзы. Она концентрирует солнечные лучи на проводнике, в результате возникает электрический ток. Соединив между собой большое количество диодов, получаем солнечную батарею. В качестве платы можно использовать картон.

Проблема в том, что мощность полученной энергии мала, для выработки достаточного количества понадобится огромное количество диодов. По финансовым и трудозатратам такая батарея намного превосходит заводскую, а по мощности сильно ей уступает.

Кроме того, выработка резко падает при уменьшении освещённости. Да и сами диоды ведут себя некорректно — нередко возникает самопроизвольное свечение. То есть сами же диоды потребляют произведённую энергию. Вывод напрашивается сам: неэффективно.

Из транзисторов

Как и в диодах, главный элемент транзистора — кристаллик. Но он заключён в металлический корпус, не пропускающий солнечный свет. Для изготовления батареи крышка корпуса спиливается ножовкой по металлу.


Затем элементы крепят к пластине из текстолита или другого материала, подходящего на роль платы, и соединяют между собой. Таким способом можно собрать батарею, энергии которой достаточно для работы фонарика или радиоприёмника, но большой мощности ожидать от такого устройства не стоит.

Но в качестве походного источника энергии небольшой мощности вполне подойдёт. Особенно если вас увлекает сам процесс создания и не очень важна практическая польза от результата.

Умельцы предлагают использовать в качестве фотоэлементов CD-диски и даже медные пластины. Портативную зарядку для телефона несложно изготовить из фотоэлементов от садовых фонариков.

Лучшим решением будет покупка готовых пластин. Некоторые интернет-площадки продают модули с небольшим производственным браком по приемлемой цене, они вполне пригодны для использования.

Рациональное размещение батарей

От размещения модулей в большой степени зависит, сколько энергии будет производить система. Чем больше лучей попадёт на фотоэлементы, тем больше они произведут энергии. Для оптимального расположения нужно соблюдать следующие условия:


  1. Для экономии места батареи чаще всего размещают на крышах.
  2. Модули устанавливают с наклоном в 450С, в идеале лучи должны попадать на панель под прямым углом.
  3. Лучше всего их ориентировать на юг или снабдить поворотной системой, обеспечивающей максимальную освещённость в течение всего дня.
  4. Чтобы избежать перегрева, летом для установки рекомендуется использовать поверхность, окрашенную в светлые тона или покрытую блестящей фольгой.
  5. На модули не должны падать тени высотных домов, деревьев, труб и других помех, препятствующих прохождению лучей.
  6. Зимой модули устанавливают почти вертикально для обеспечения самоочистки от снега.

Важно! Сила тока батареи задаётся производительностью самого слабого элемента. Даже небольшая тень на одном модуле может снизить производительность системы от 10 до 50%.

Как рассчитать необходимую мощность

Прежде чем приступить к сборке батареи, необходимо определиться с требуемой мощностью. От этого зависит количество приобретаемых ячеек и общая площадь готовых батарей.

Система может быть как автономной (самостоятельно обеспечивающей электричеством дом), так и комбинированной, совмещающей энергию солнца и традиционного источника.

Расчёт состоит из трёх шагов:


  1. Выясните общую потребляемую мощность.
  2. Определите достаточную ёмкость аккумуляторной батареи и мощность инвертора.
  3. Вычислите необходимое количество ячеек на основе данных об инсоляции в вашем регионе.

Потребляемая мощность

Для автономной системы определить её можно по вашему электросчётчику. Общее количество потребляемой энергии за месяц разделите на количество дней и получите среднее значение ежедневного потребления.

Если от батареи будет запитана только часть устройств, выясните их мощность по паспорту или маркировке на приборе. Полученные значения умножьте на количество часов работы в сутки. Сложив полученные значения для всех устройств, получите среднее потребление в сутки.

Ёмкость АБ (аккумуляторной батареи) и мощность инвертора

АБ для солнечных систем должны выдерживать большое количество циклов разряда и разряда, иметь малый саморазряд, выдерживать большой ток зарядки, работать при высоких и низких температурах, при этом требовать минимального обслуживания. Эти параметры оптимальны у свинцово-кислотных АБ.


Ещё один немаловажный показатель — ёмкость, максимальный заряд, который может принять и сохранить аккумулятор. Недостаточную ёмкость увеличивают, соединяя АБ параллельно, последовательно или комбинируя оба соединения.

Выяснить необходимое количество АБ поможет расчёт. Рассмотрим его для концентрации запаса энергии на 1 день в АБ ёмкостью 200 А.ч и напряжением 12 В.

Предположим, ежедневная потребность составляет 4800 В.час, выходное напряжение системы 24 В. Учтём, что потери на инверторе составят 20%, введём поправочный коэффициент 1,2.

4800:24х1.2=240 А.ч

Глубина разряда АБ не должны превышать 30—40%, учтём это.

240х0.4= 600 А.ч

Полученное значение втрое превышает ёмкость аккумулятора, поэтому для запаса необходимого количества потребуется 3 АБ, соединённых параллельно. Но при этом напряжение аккумулятора 12 В, чтобы увеличить его в два раза, понадобится ещё 3 АБ, соединённых последовательно.

Инвертор служит для преобразования постоянного тока в переменный. Выбирают его по пиковой, максимальной нагрузке. На некоторых потребляющих устройствах величина пускового тока значительно выше номинальной. Именно этот показатель и берётся в расчёт. В остальных случаях учитываются номинальные значения.


Имеет значение и форма напряжения. Лучший вариант — чистая синусоида. Для приборов, нечувствительных к перепадам напряжения подойдёт квадратная форма. Следует также учитывать возможность переключения прибора от АБ напрямую к солнечным батареям.

Необходимое количество ячеек

Показатели инсоляции в разных областях сильно отличаются. Для правильного расчёта необходимо знать эти цифры для вашей местности, данные несложно найти в интернете или на метеостанции.

Таблица инсоляции по месяцам для разных регионов

При расчёте ориентируйтесь на показатели наименьшей инсоляции в течение года, иначе в этот период батарея не будет вырабатывать достаточное количество энергии.

Предположим, минимальные показатели — в январе, 0.69, максимальные — в июле, 5.09.

Поправочные коэффициент для зимнего времени — 0.7, для летнего — 0.5.

Необходимое количество энергии — 4800 Вт.ч.

Одна панель имеет мощность 260 Вт и напряжение 24 В.

Потери на АБ и инверторе составляют 20%.

Вычисляем потребление с учётом потерь: 4800×1,2=5760 Вт·ч=5,76 кВтч.

Определяем производительность одной панели.

Летом: 0,5× 260×5,09= 661,7 Втч.

Зимой: 0,7× 260×0,69=125,5 Втч.

Высчитываем необходимое количество батарей, разделив потребляемую энергию на производительность панелей.

Летом: 5760/661,7=8,7 шт.

Зимой: 5760/125,5=45,8 шт.

Получается, что для полного обеспечения, зимой понадобится в пять раз больше модулей, чем летом. Поэтому стоит сразу устанавливать больше батарей или на зимний период предусмотреть гибридную систему электроснабжения.

Как собрать солнечную батарею своими руками

Сборка состоит из нескольких этапов: изготовление корпуса, пайка элементов, сборка системы и её установка. Прежде чем приступить к работе, запаситесь всем необходимым.

Материалы и инструменты

  • фотоэлементы;
  • плоские проводники;
  • спиртово-канифольный флюс;
  • паяльник;
  • алюминиевый профиль;
  • алюминиевые уголки;
  • метизы;
  • силиконовый герметик;
  • ножовка по металлу;
  • шуруповёрт;
  • стекло, оргстекло или плексиглаз;
  • диоды;
  • измерительные приборы.

Фотоэлементы лучше заказать в комплекте с проводниками, они специально предназначены для этой цели. Другие проводники обладают большей хрупкостью, что может стать проблемой при пайке и сборке. Есть ячейки с уже припаянными проводниками. Стоят они дороже, но существенно экономят время и трудозатраты.

Рамка корпуса обычно изготавливается из алюминиевого уголка, но возможно использование деревянных реек или брусков квадратного сечения 2х2. Этот вариант менее предпочтителен, так как не обеспечивает достаточную защиту от атмосферного воздействия.

Для прозрачной панели выбирайте материал с минимальным показателем преломления света. Любое препятствие на пути лучей увеличивает потери энергии. Желательно, чтобы материал пропускал как можно меньше инфракрасного излучения.

Важно! Чем больше наргевается панель, тем меньше она вырабатывает энергии.

Расчёт каркаса

Габариты каркаса высчитываются исходя из размеров ячеек. Важно между соседними элементами предусмотреть небольшое расстояние в 3—5 мм и учесть ширина рамки, чтобы она не перекрывала кромки элементов.

Ячейки выпускаются различных типоразмеров, рассмотрим вариант из 36 пластин, размером 81х150 мм. Элементы располагаем в 4 ряда, по 9 штук в одном. Исходя из этих данных, размеры каркаса получаются 835х690 мм.

Изготовление короба

  1. Из алюминиевого уголка шириной 35 мм и вырезаем две заготовки по 835 мм, две по 690 мм.
  2. Просверлите по краям отверстия под крепление.
  3. На больших заготовках просверлите по 4 отверстия на каждой.
  4. Собираем каркас, скрепив снаружи уголками при помощи шурупов.
  5. Из стекла, оргстекла или плексиглаза вырезаем прямоугольный лист чуть меньших размеров.
  6. Готовый каркас изнутри промазываем силиконовым герметиком, не допуская пропусков.
  7. Вкладываем в каркас стекло, хорошенько прижимаем, фиксируем и даём высохнуть.

Пайка элементов и сборка модулей

Если элементы приобретены без контактов, сначала их нужно припаять к каждой пластине. Для этого нарежьте проводник на одинаковые отрезки.

  1. Вырежьте из картона прямоугольник нужного размера и намотайте на него проводник, затем разрежьте с обеих сторон.
  2. На каждый проводник нанесите флюс, приложите полоску к элементу.
  3. Аккуратно припаяйте проводник по всей длине ячейки.
  4. Ячейки выложите в ряд друг за другом с зазором 3—5 мм и последовательно спаяйте между собой.
  5. Готовые ряды по 9 ячеек перенесите в корпус и выровняйте относительно друг друга и контура рамки.
  6. Спаяйте параллельно, используя более широкие шины и соблюдая полярность.
  7. Выведите контакты «+» и «-».
  8. На каждый элемент нанесите по 4 капли герметика и уложите сверху второе стекло.
  9. Дайте клею высохнуть.
  10. Залейте по периметру герметиком, чтобы внутрь не попадала влага.
  11. Закрепите панель в корпусе при помощи уголков, прикрутив их в боковым сторонам алюминиевого профиля.
  12. Установите при помощи герметика блокировочный диод Шоттке, чтобы исключить разрядку АБ через модуль.
  13. Выходной провод снабдите двухконтактным разъёмом, к нему в дальнейшем подсоедините контроллер.
  14. Прикрутите к рамке уголки для крепления батареи к опоре.

Видео: пайка и сборка солнечного модуля

Батарея готова, осталось её установить. Для более эффективной работы можно изготовить трекер.

Изготовления поворотного механизма

Простейший поворотный механизм несложно изготовить самостоятельно. Принцип его работы основан на системе противовесов.

  1. Из деревянных брусков или алюминиевого профиля соберите опору для батареи в виде стремянки.
  2. С помощью двух подшипников и металлической штанги или трубы установите на вершине батарею так, чтобы она была закреплена по центру большей стороны.
  3. Сориентируйте конструкцию с востока на запад и дождитесь, когда солнце будет в зените.
  4. Поверните панель, чтобы лучи падали на неё вертикально.
  5. Укрепите на одном конце ёмкость с водой, уравновесьте её на другом конце грузом.
  6. В ёмкости проделайте отверстие, чтобы вода понемногу вытекала.

По мере вытекания воды, вес сосуда будет уменьшаться и край панели поднимется вверх, поворачивая батарею за солнцем. Величину отверстия придётся определять опытным путём.

Всё, что вам понадобится, это утром налить воды в ёмкость. Такую конструкцию не установишь на крыше, а для садового участка или лужайки перед домом она вполне подойдёт. Есть и другие, более сложные конструкции трекера, но они потребуют больших затрат.

Видео: как изготовить самостоятельно электронный солнечный трекер

Установка батарей

  1. Перед тем, как устанавливать батареи на крышу, проверьте её прочность, при необходимости укрепите кровлю.
  2. Смонтируйте опоры, на которые будут крепиться батареи, и укрепите их на крыше. Конструкция должна выдерживать сильный ветер.
  3. Установите модули, чтобы они плотно прилегали к элементам опоры, закрепите саморезами.
  4. Подключите разъёмы к проводам, ведущим к контроллеру. Все приборы, кроме панелей устанавливаются внутри помещения.
  5. Установите АКБ, инвертор, автоматы, подсоедините всё к сети.

Теперь можно провести испытание, и пользоваться бесплатным электричеством.

Обслуживание модулей

Особенного обслуживания солнечные панели не требуют, ведь у них нет движущихся частей. Для их нормального функционирования достаточно время от времени очищать поверхность от грязи, пыли и птичьего помёта.

Помойте батареи из садового шланга, при хорошем напоре воды для этого не понадобится даже забираться на крышу. Следите за исправностью дополнительного оборудования.

Как скоро окупятся затраты

Не стоит ждать сиюминутной выгоды от гелиосистемы снабжения электричеством. Средняя её окупаемость приблизительно 10 лет для автономной системы дома.

Чем больше вы потребляете энергии, тем быстрее окупятся ваши затраты. Ведь и для маленького, и для большого потребления требуется приобретение дополнительного оборудования: АКБ, инвертора, контроллера, а они оставляют нималую часть расходов.

Учитывайте также срок службы оборудования, да и самих панелей, чтобы не пришлось их менять прежде, чем они окупятся.

Несмотря на всё издержки и недостатки, за солнечной энергией будущее. Солнце относится к возобновляемым источникам энергии и он прослужит, по крайней мере, ещё 5 тысяч лет. Да и наука не стоит на месте, появляются новые материалы для фотоэлементов, с гораздо большим КПД. А значит, скоро они будут доступнее по цене. Но использовать энергию солнца можно уже сейчас.

Источник: remoskop.ru

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1 – пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Шаг #2 – изготовление каркаса для солнечной батареи

Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Шаг #4 – тестирование батареи перед герметизацией

Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов – так значительно проще обнаружить, где контакты соединены плохо.

Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.

Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.

Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.

Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.

Обычно самодельная солнечная батарея, сконструированная из фотоэлементов группы В выдаёт показания 5-10 А, что на 10-20% ниже, чем у солнечных панелей промышленного производства.

Шаг #5 – герметизация уложенных в корпус фотоэлементов

Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.

Существует два способа герметизации:

  • полная заливка, когда панели заливаются герметиком;
  • нанесение герметика на пространство между фотоэлементами и на крайние элементы.

В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.

Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.

Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.

После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.

Выводы и полезное видео по теме

Обзор фотоэлементов, заказанных в китайском интернет-магазине:

Видео-инструкция по изготовлению солнечной батареи:

Сделать солнечную батарею своими руками – не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи – правильно выбрать и установить фотоэлементы.

Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

У вас есть практические навыки создания солнечных батарей? Поделитесь, пожалуйста, своим опытом с посетителями нашего сайта – пишите комментарии в расположенном ниже блоке. Там же можно задать вопросы по теме статьи.

Источник: sovet-ingenera.com

Устройство солнечной батареи

Перед тем как создать солнечную батарею своими руками, стоит разобраться в ее работе. Электрическую энергию накапливают аккумуляторы. В основе работы самой батареи лежит фотоэлектрический эффект. Он происходит в фотоэлементах, которые и «собирают» энергию солнечных лучей. Такие пластины как раз и выступают основной частью фотобатарей. Как же преобразуется энергия из солнечной в электрическую:

  1. Лучи солнца попадают на одну из сторон пластины, имеющую тонкий слой бора или фосфора.
  2. Под их воздействием высвобождается множество электронов. Фосфорная пленка удерживает их, не давая разлетаться.
  3. Движение электронов упорядочивается металлическими «дорожками», которыми оснащена каждая пластина.
  4. Так возникает электрический ток. Его можно получить тем больше, чем больше взять кремниевых ячеек.

Выбираем фотоэлементы

Первыми в списке необходимых материалов идут, конечно же, солнечные фотоэлементы. Поскольку развитие альтернативных источников энергии в мире не стоит на месте, разработано уже множество различных солнечных пластин.

  • Пленочные. Сегодня их выпускают только технологически «продвинутые» компании, поэтому за ними остается только «охотиться». Такие элементы встречаются в уже готовых фотобатареях.
  • Аморфные. Это фотопластины, способные собирать лучи солнца в любых погодных условиях: на закате, при запыленном воздухе, в дождь и пр. В основе аморфных элементов лежит тончайший слой кремния, напыляемый на стеклянную или полимерную поверхность. Для создания самодельной солнечной батареи своими руками такие элементы используют редко из-за небольшого срока службы и недостаточного КПД.
  • Из кристаллического кремния. Здесь выделяют два типа фотопластин:
    • Монокристаллические. Состоят из одного кремниевого кристалла. Эффективность таких панелей выше за счет одностороннего направления. Подобные элементы чаще применяют в регионах с высокой активностью солнца. Распознать подобные ячейки можно по однородному темному цвету и срезанным углам. Их КПД составляет около 19%, а срок службы достигает 50 лет.
    • Поликристаллические. Множество мелких кристаллов объединяют в один элемент. Эффективность от этого снижается, но зато панели можно использовать там, где солнце не слишком активно. Структуру из большого числа кристаллов можно обнаружить по более светлому оттенку синего цвета и неоднородному рисунку. Поликристаллы уступают монокристаллам в сроке службы (до 25 лет) и КПД (до 15%).

Выбираем фотоэлементы

В первый раз изготовить солнечную батарею своими руками лучше из более дешевых поликристаллических пластин. К монокристаллическим стоит переходить уже после обкатки технологии. Недорогие фотопластины продаются в зарубежных интернет-магазинах. Самые известные среди них: EBay, Aliexpress и Amazon.

Сегодня некоторые продавцы предлагают уцененные фотопластины класса «B». Они стоят дешевле в связи с имеющимися повреждениями: различными сколами, отсутствующими уголками, микротрещинами и пр. Производительность ячеек от этого не страдает, но цена значительно снижается. Для «набивки руки» такие элементы вполне подойдут.

Альтернатива фотоэлементам

Решив сделать солнечную батарею своими руками из подручных средств, можно заменить фотопластины на полупроводники с p-n-переходами. Они часто остаются от старых приемников и телевизоров. Полупроводники тоже способны вырабатывать ток под действием солнечного излучения. Для изготовления панели остается только соединить несколько подобных деталей.

Альтернатива фотоэлементам

Подвох здесь в недостаточной мощности получаемых устройств. При самых мощных транзисторах удается получить напряжение не более 0,2 В с каждого. Сила тока в них будет измеряться микроамперами, и это при самом ярком солнце. Чтобы добиться тех же параметров, что дают кремниевые фотоэлементы, нужно будет найти сотни полупроводников. Но даже в лучшем случае вы сможете зарядить только светодиодный фонарь или мобильник.

Расчет количества фотоэлементов

Важным этапом в инструкции, как сделать солнечную батарею своими руками, выступает расчет ее размера. Здесь важны напряжение и сила тока фотоэлементов. Для средних ячеек эти параметры составляют 0,5 В и 3 А соответственно. Если для создания батареи соединить 30 ячеек, тогда ее мощность составит 30 · 0,5 В · 3 А = 45 Вт.

Расчет количества фотоэлементов

С учетом полученного значения можно рассчитать и то, сколько потребуется таких блоков для фотобатареи той или иной мощности, а также требуемую для них площадь.

Что еще потребуется для создания фотобатареи

Перед началом работ проверьте, все ли из списка есть у вас под рукой:

  • рейки и фанера для каркаса;
  • силиконовый герметик;
  • припой;
  • антисептик и краска для дерева;
  • многожильный медный провод для соединения фотоэлементов;
  • уголки алюминиевые;
  • антибликовое стекло, поликарбонат или плексиглас;
  • диоды Шоттки, рассчитанные на отдачу одной фотопластины.

Также потребуется простой инструмент: паяльник, пила, стеклорез, отвертка, малярная кисть – все, что есть у любого домовитого хозяина.

Инструкция по созданию солнечной панели

Соединяя солнечные ячейки, стоит придерживаться соотношения сторон 1:1. Например, если по вашим расчетам получится, что требуется уложить 120 пластин, то можно расположить их в 12 рядов по 10 шт. Каждые два «столбика» подключите параллельно, а 5 полученных блоков – последовательно. Так провода будут уложены аккуратнее. Определившись с расположением ячеек, можно приступать к выполнению инструкции, как собрать солнечную батарею своими руками. Она включает несколько основных этапов.

Создание корпуса

Корпус изготавливают из деревянных реек. Высота их не должна быть больше 25 мм, иначе крайние ряды ячеек окажутся затененными. Для соединения реек используют алюминиевые уголки. Размеры корпуса определяются размерами фотопластин. Для ячеек 3х6 дюймов (7,62х15,24 см) при расположении их в 12 рядов по 10 шт. потребуется рама не менее 160х100 см.

Создание корпуса

Обратная сторона зашивается фанерой, а внизу рамы просверливают вентиляционные отверстия. Для защиты дерева его покрывают антисептиком, а затем окрашивают. Уже по готовому каркасу из стекла или плексигласа вырезают панель, которую крепят при помощи уголковых кронштейнов.

Пайка фотоэлементов

Для выполнения этой задачи необходим паяльник мощностью до 40 Вт и легкоплавкий припой. Небольшое его количество наносится на выводные части пластин. Обязательно соблюдается полярность подключения. Расстояние между фотоэлементами должно быть не менее 5 мм для учета возможного расширения. Для увеличения напряжения элементы соединяют последовательно, а для повышения тока – параллельно.

Пайка фотоэлементов

Когда отдельные цепочки будут собраны, их кладут тыльной стороной к подложке и приклеивают герметиком. Каждый блок солнечных пластин должен быть снабжен диодом Шоттки, исключающим разрядку аккумуляторов ночью. По схеме, представленной выше, осуществляют соединение всех цепочек с использованием медного провода или специальной шины.

Окончательная сборка

Уже готовые подложки укладывают в корпус. Для крепления используют саморезы. При наличии в раме поперечины в ней просверливают отверстия под провода. Выведенный наружу кабель фиксируют и припаивают к выводам сборки. Стекло укладывают в каркас, предварительно нанеся на верхний контур рамы слой герметика.

Изучив, как делают солнечные батареи в домашних условиях своими руками, можно сделать вывод, что для этого требуются хотя бы минимальные знания электротехники. Но сделав все максимально аккуратно, можно надеяться на удачное выполнение поставленной задачи. Также нужно быть готовым, что альтернативная энергия своими руками требует финансовых и временных затрат. Потренировавшись на первой панели, вы сможете сделать еще не одну солнечную батарею, тем самым обеспечив свое жилище бесплатной электроэнергией.

Источник: altenergiya.ru

Устройство и принцип работы

Как сделать солнечную батарею в домашних условиях

Есть два основных способа использования солнечной энергии:

  • Прямое использование для нагрева воды и аккумулирования тепла в гелио системах отопления и горячего водоснабжения.
  • Преобразование света в электроэнергию.

Справка. Основные законы преобразования света в электроэнергию были сформулированы в конце XIX века российским ученым Александром Столетовым.

Первые солнечные панели появились еще в семидесятые годы прошлого столетия, но несовершенные технологии и низкая эффективность делали производство батарей дорогим и низкорентабельным. И только последние разработки в этой области сделали производство «солнечной» электроэнергии технически и экономически доступными.

Есть несколько типов панелей, использующих разные материалы. Но все они построены на полупроводниках. Преобразование света основано на внутреннем фотоэффекте p-n перехода — возникновении дополнительных «дырок» и свободных электронов под воздействием света. Электроны «стремятся» в n-область, дырки — в p-область. Как результат перераспределения заряда между областями, возникает разность потенциалов и через переход протекает ток.

Это делает возможным объединять модули в единую систему, с подключением к общему оборудованию, которое позволяет контролировать работу, накапливать электроэнергию, преобразовывать ее и распределять между потребителями. А для защиты фотоэлементов используют специальное покрытие из закаленного стекла.

Стационарные солнечные батареи дополнительно оборудуют инверторами, преобразующими постоянный ток в переменный. Компактным модулям для питания устройств, работающих от аккумуляторов, инвертор не нужен.
Аналогичный компактный модуль можно сделать своими руками из диодов или транзисторов и подключить его к «промежуточному» аккумулятору. А уже от него заряжать мобильный телефон (как от Power Box) или использовать для питания LED светильника.

Солнечная панель из диодов

Для изготовления панели можно использовать диоды в металлических и стеклянных корпусах. Первый вариант мощнее, но более трудоемкий. Второй — проще, хотя для достижения такой же мощности понадобится больше элементов.

Панель из диодов в металлическом корпусе

Если говорить о максимальной мощности, которую можно получить с одного кристалла полупроводника, то лучшими в этом отношении будут диоды серии КД203 (КД2010).

Но сложность заключается в том, что диоды этой серии изготовлены в металлокерамическом корпусе, который заодно выполняет роль теплоотвода при монтаже на металлическое шасси.

Чтобы вынуть кристалл кремниевого полупроводника и «открыть» его для освещения, надо:

  • аккуратно разбить керамику и освободить верхний контакт;
  • раскрыть корпус, сняв с основания «крышку»;
  • разогреть диод до температуры плавления олова, которым к кристаллу припаяны контакты;
  • освободить от верхнего жесткого контакта кристалл, а вместо него припаять гибкий проводник.

Диоды средней мощности в металлическом или металлостеклянном корпусе серии Д7, Д214, Д215, Д226, Д237, Д242-Д247 разбирать проще. Сначала бокорезами обрезают жесткий контакт и часть корпуса в виде трубки со стороны анода. А затем вставив нож в шов между основанием и крышкой, открывают корпус. Для облегчения процесса можно предварительно слегка сжать фланец корпуса в тисках, чтобы раскрылась щель между основанием и крышкой.

И эту процедуру надо выполнить с каждым диодом, а их должно быть несколько десятков. В реальных условиях напряжение на одном кристалле будет ниже максимума раза в полтора — около 0.5 В. Чтобы получить на выходе 5 В, надо последовательно соединить в блок 10 кристаллов.

Приблизительно такое же соотношение максимальной и реальной силы тока — рассчитывать надо на величину 4-5 мА. Чтобы «нарастить» силу тока и повысить мощность солнечной батареи, надо параллельно соединить на панели несколько таких блоков.

Сама панель должна иметь вид решетки из расположенных в несколько рядов ячеек двух разных диаметров, расположенных поочередно. Большое отверстие — для посадки корпуса, меньшее — для гибкого проводника, которым соединяют в цепь расположенные рядом диоды. Такая заготовка для диодов в металлическом корпусе без крышки глядит так:

Как сделать солнечную батарею в домашних условиях

Возможны и другие варианты конструкции панели, но принцип прежний — последовательно-параллельное соединение элементов. Принцип как сделать солнечную батарею из диодов был описан еще в советское время. Ниже приведено фото иллюстрации тех времен, на которой показаны способы разборки элементов и принципиальная схема соединения:

Как сделать солнечную батарею в домашних условиях

Панель из диодов в стеклянных корпусах

Эти элементы менее мощные и способны «генерировать» токи менее одного миллиампера, но их достоинство в том, что кристалл полупроводника не надо «открывать».

У некоторых серий корпус изначально прозрачный, а у тех элементов, корпуса которых окрашены, надо просто смыть краску растворителем.

К таким относятся диоды Д223Б, которые способны при оптимальной ориентации относительно яркого солнца выдавать напряжение около 0,3 В, что почти сопоставимо с более мощными аналогами.

Пошаговый процесс изготовления солнечной панели выглядит так:

  • помещают на некоторое время диоды в емкость с растворителем;
  • достают из растворителя элементы и счищают с них размягченную краску;
  • сгибают под 180° выводы анодов (это необходимо для правильного положения кристалла полупроводника относительно плоскости монтажной платы;
  • монтируют на монтажной плате элементы, объединяя их в последовательно параллельные группы согласно схеме соединения.

Вот так выглядит панель, состоящая из 9 параллельно соединенных блоков по 12 элементов в каждом:
Как сделать солнечную батарею в домашних условиях
Как видно, помещенная на солнце, она выдает напряжение в 2.5 В, а ее мощности хватает, чтобы полностью зарядить за 2 часа ионистор емкостью 0,47 Ф.

Панель из светодиодов

Любой светодиод обладает обратимостью: он не только излучает свет под напряжением, но и наоборот — генерирует электричество под воздействием света. Максимальная ЭДС у сверхярких элементов — до 1.65 В, но ток при этом получается очень маленьким — до 20 мкА. Зеленые индикаторные светодиоды с линзой диаметром 3 или 5 мм при освещении выдают почти 1.6 В. Совсем немного уступают им красные и оранжевые светодиоды с линзой 5 мм.

Панель солнечной батареи из транзисторов

Так же как и у диодов, открытый полупроводниковый кристалл транзистора при освещении образует разность потенциалов на p-n переходах. Если провести измерения, то в результате окажется, что всегда есть пара контактов, которая выдает максимально возможную мощность.

Но перед этим надо «открыть» корпус транзистора — аккуратно снять крышку. Вот так выглядит транзистор 2Т908А «внутри»:
Как сделать солнечную батарею в домашних условиях

Обычно наибольшая ЭДС возникает между коллектором и базой или эмиттером и базой. Перед сборкой домашней солнечной панели надо протестировать все заготовленные элементы и рассортировать их по группам (блокам) с наиболее близкими значениями суммарных напряжений.

Примечание: Один из основных недостатков мощных транзисторов отечественного производства — это «нестабильность» характеристик.

Например, чтобы подобрать приблизительно одинаковую пару для двухкаскадного усилителя, надо было «прозвонить» вручную несколько транзисторов.

Для увеличения общего напряжения и тока применяют смешанное соединение.

Первый вариант. Соединяют параллельно группы (блоки) с одинаковым суммарным напряжением последовательно собранных элементов, и получают на выходе сумму токов от каждого блока. Схема приведена ниже:

Второй вариант. Элементы с приблизительно одинаковыми напряжениями соединяют в группе параллельно (выходной ток будет равен сумме токов). А чтобы нарастить напряжение, несколько таких групп соединяют последовательно.

Сборка корпуса

Самый простой корпус для панели домашней солнечной батареи изготавливают из фанеры или листового пластика:

  • Вырезают по размеру лист, к которому крепят панель.
  • По периметру листа крепят саморезами или на клей небольшие бортики высотой чуть больше толщины панели.
  • Сверлят отверстия под выходной кабель с клеммами для подключения аккумулятора.
  • Подключают к панели кабель через диод Шотки (это надо, чтобы обезопасить аккумулятор от короткого замыкания).
  • Сверху накрывают лист светопрозрачным листом — оргстеклом или монолитным поликарбонатом. Крепят его к бортам саморезами.

В качестве средства повышения эффективности панели из одного блока иногда используют алюминиевые банки. Такая солнечная батарея своими руками выглядит так:
Как сделать солнечную батарею в домашних условиях
В этой конструкции донышко от алюминиевой банки выполняет роль вогнутого зеркала, которое «собирает» в фокусе отраженные лучи света.

Даже если кристалл полупроводника не лежит в главном фокусе, он все равно расположен на главной оптической оси, а это уже увеличивает концентрацию светового потока. Но такая конструкция оправдана в случае, если размеры панели не имеют значения, а количество диодов или транзисторов ограничено.

Их достоинство в том, что можно использовать элементную базу, которая морально устарела и досталась практически даром как «наследство» от советской промышленности. Изготовление подобной батареи можно рассматривать как хобби или приобретение полезных навыков у новичка. А практическая польза, хоть небольшая, но будет.

Источник: 3batareiki.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.