Регулятор для паяльника 220в на симисторе схема



Симисторный регулятор мощностиПростой регулятор мощности для паяльника (лампы) на MAC97A

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Немного о принципе работы симистора

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.


Простой регулятор мощности для паяльника (лампы) на MAC97A

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

Простой регулятор мощности для паяльника (лампы) на MAC97A

 

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Простой регулятор мощности для паяльника (лампы) на MAC97A


Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Простой регулятор мощности для паяльника (лампы) на MAC97A

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.


Симисторный регулятор мощности

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Симисторный регулятор мощностиСимисторный регулятор мощности

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Симисторный регулятор мощности

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3


Симисторный регулятор мощности

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Источник: www.MasterVintik.ru

Регуляторы для паяльника своими руками. Обзор способов монтажа

В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.

Возможные виды монтажа в корпус: вилка, розетка, станция

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.


Другой вид корпуса для несложных регуляторов — розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.

Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.

Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.

Варианты схем в зависимости от ограничителя мощности

Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали, приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.


Можно сделать простейший регулятор с диодом и выключателем — для того чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно — под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.

Тиристор — своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода у тиристора 3 выхода — управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока.

Симистор, или триак — вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе.

В схему регулятора мощности для паяльника — зависимости от его возможностей — включают следующие редиодетали.

Резистор — служит для преобразования напряжения в силу тока и обратно.


trong>Конденсатор — основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь — по мере того как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор. Диод — полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном. Подвид диода — стабилитрон — используется в устройствах для стабилизации напряжения. Микроконтроллер — микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.

Схема с выключателем и диодом

Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь — на паяльник подаётся всё напряжение, размыкает — напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым — такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.

Регулятор на тиристоре

Регулятор с ограничителем мощности — тиристором — позволяет плавно устанавливать температуру паяльника от 50 до 100%. Для того чтобы расширить эту шкалу (от нуля до 100%), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе совершает сходным образом. Метод можно применить для любого устройства такого типа.

Сборка тиристорного (симисторного) регулятора на печатной плате


  1. Сделать монтажную схему — наметить удобное расположение всех деталей на плате. Если плата приобретается — монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали — см. спецификацию к схеме, кусачки, нож, провода, флюс, припой, паяльник.
  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.
  5. Смазать флюсом и припаять каждую деталь — сначала резисторы с конденсаторами, потом — диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
  8. Проверить регулятор — подключить к лампе накаливания.
  9. Собрать устройство.

Схема с маломощным тиристором

Тиристор небольшой мощности недорогой, занимает мало места. Его особенность — в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт.


Спецификация

Схема с мощным тиристором

Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.

Спецификация

Сборка тиристорного регулятора по приведённой схеме в корпус — наглядно

https://youtube.com/watch?v=4DG4_w2fe4E

Сборка и проверка тиристорного регулятора (обзор деталей, особенности монтажа)

Схема с тиристором и диодным мостом

Такое устройство даёт возможность регулировки мощности от нуля до 100%. В схеме использован минимум деталей.

Спецификация

Регулятор на симисторе

Схема регулятора на симисторе с небольшим количеством радиодеталей. Позволяет регулировать мощность от нуля до 100%. Конденсатор и резистор обеспечат чёткую работу симистора — он будет открываться даже при низкой мощности.


Сборка симисторного регулятора по приведённой схеме пошагово

Регулятор на симисторе с диодным мостом

Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.

Регулятор мощности с симистором на микроконтроллере

Микроконтроллер позволяет точно установить и отобразить уровень мощности, обеспечить автоматическое отключение регулятора, если с ним долго не работают. Способ монтажа такого регулятора существенно не отличается от монтажа любого симисторного регулятора. Паяется на печатной плате, которая изготавливается предварительно. Очень важно поставить правильную прошивку.

Спецификация

Рекомендации по проверке и наладке

Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником, то есть под нагрузкой. Вращаем ручку резистора — напряжение плавно изменяется.

В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка — подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.

Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора — взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя — сгорит индикатор.

Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них. А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.

Источник: tehznatok.com

Применение симисторных регуляторов в быту

Подобные устройства применяются в быту везде, где есть необходимость плавно изменять мощность прибора или инструмента. В целом, работает такая схема по принципу снижения сетевого напряжения 230 В. А если напряжение питания электроприбора уменьшать, то пропорционально будет изменяться и его мощность.

Пример. Допустим у нас есть рассчитанный на сетевое напряжение 230 В паяльник мощностью 80 Вт. Для пайки обычных радиодеталей и нетолстых проводов этой мощности слишком много. Жало перегревается, канифоль горит и чернеет, припой не прилипает, а скатывается шариками. Это означает, что температура на кончике жала слишком большая.

А вот если уменьшить мощность такого паяльника, то перечисленные проблемы исчезнут. Сделать это можно путем снижения напряжения его питания с 230 В до, например, 80 В (почти в три раза). А поскольку мощность (а также температура нагрева жала) снижается пропорционально, то в итоге мы получим паяльник на 25-30 Вт.
Симисторные регуляторы применяются для плавного изменения мощности:

  • паяльников (именно для паяльника было сделано описанное в статье устройство);
  • электрических сушилок для фруктов;
  • утюгов;
  • обогревателей;
  • других нагревательных приборов;
  • пылесосов;
  • электроинструментов – болгарок, орбитальных шлифовальных машинок, лобзиков;
  • другого оборудования с двигателями – точильных станков, сверлильных и прочих;
  • ламп накаливания.

Касательно последнего пункта стоит отметить, что именно такая схема симисторного регулятора не очень подходит. Но и об этом подробнее сказано ниже.

Простейшая схема симисторного регулятора и принцип ее работы

На рисунке ниже изображена самая простая схема регулятора мощности на симисторе. Проще никак. Для начала рассмотрим компоненты, из которых состоит устройство, и зачем они там нужны.

схема симисторного регулятора
Схема регулятора мощности на симисторе

В данной схеме присутствует всего 5 радиодеталей:

  1. Симистор U1.
  2. Динистор D1.
  3. Конденсатор C1.
  4. Переменный резистор RV1.
  5. Резистор R1.

Симистор U1 – является основным компонентом схемы. Все остальные радиодетали «работают на него». У симистора бывает всего два рабочих состояния – он может быть либо открыт, либо закрыт. Когда он открыт, электрический ток беспрепятственно протекает через него от источника питания к нагрузке. Когда закрыт – ток не течет.

Чтобы «заставить» симистор открыться и пропускать ток, на его управляющий вывод (на схеме находится слева) необходимо подать небольшое напряжение. Закрывается же он «самостоятельно», как только ток перестает течь через основные выводы.

В целом, работает это следующим образом. Напряжение в наших розетках переменное, соответственно, ток тоже бежит то в одну сторону, то в другую с частотой 50 раз в секунду. Если в момент, когда он течет, например, от источника питания к нагрузке, «заставить» симистор открыться, наш прибор получит «дозу» питания и проработает немножко.

Затем ток меняет свое направление, так как напряжение у нас переменное. Это приводит к тому, что симистор закрывается.

Поскольку направление тока из розетки может изменяться по направлению 50 раз в секунду, то мы каждый этот раз можем «пропустить» через нагрузку столько тока, сколько нам надо для получения желаемой мощности.

Например, если пропустим только половину, то 80-ваттный паяльник будет потреблять только 40 Вт, и греться в два раза слабее. А для этого нам надо каждый раз открывать симистор ровно на половине полуволны переменного напряжения. Вторая полуволна будет как бы срезаться, и для питания прибора не использоваться.

Динистор D1 – как раз и «занимается» тем, что заставляет симистор открываться в нужный нам момент. У этого компонента тоже есть всего два состояния – открыт (пропускает ток) и закрыт (не пропускает). Чтобы динистор открылся, и подал на симистор управляющий сигнал, к нему необходимо приложить определенное напряжение (около 30 В). Если напряжение меньше этого значения – он закрыт.

Конденсатор C1 – нужен для того, чтобы открывать динистор D1. Происходит это следующим образом. Когда переменный ток течет в одном из направлений, конденсатор «постепенно» заряжается, и напряжение на его выводах увеличивается. Когда оно достигает значения, достаточного для открывания динистора, последний именно это и делает. А конденсатор возвращается в исходное состояние, то есть, разряжается. И так 50 раз в секунду.

Резисторы R1 и RV1 – ограничивают ток через наш конденсатор. Чем меньше их суммарное сопротивление, тем быстрее конденсатор заряжается и достигает нужного для открытия динистора напряжения. Когда сопротивление резисторов увеличивается, ток течет меньший, и заряд конденсатора происходит медленнее.

Теперь рассмотрим слаженную работу всех этих компонентов вместе. Симистор на каждой полуволне переменного напряжения (50 раз в секунду) открывается и закрывается на определенный промежуток времени, пропуская, или наоборот, не пропуская через себя ток. В зависимости от длительности этого промежутка времени нагрузка (паяльник, двигатель, лампа) получает то или иное напряжение.

Открывается симистор в тот момент, когда на динисторе появляется достаточное для его пробоя (открывания) напряжение. За то, на каком моменте полуволны это произойдет, отвечает конденсатор. А насколько быстро или медленно он будет заряжаться, зависит от сопротивления резисторов в данный момент.

В итоге, если мы будем вращать ручку переменного резистора, мы будем менять время заряда конденсатора, момент срабатывания динистора и открывания симистора. Когда сопротивление потенциометра минимальное (ручка выкручена до упора влево), ток через конденсатор максимально большой, заряжается он быстро, динистор открывается рано, и симистор на протяжение почти всей полуволны пропускает ток на нагрузку.

Когда мы выкручиваем ручку в сторону увеличения сопротивления потенциометра, процесс заряда конденсатора замедляется, динистор открывается позже, а симистор пропускает в результате меньше тока на нагрузку.

Сборка регулятора мощности на симисторе своими руками

От теории плавно переходим к практике. Соберем симисторный регулятор мощности, используя описанную выше схему. Все ее компоненты мы «запрячем» в корпус наружной розетки, превратив ее в источник регулируемого напряжения. Хотя делать это необязательно.

Компоненты для сборки регулятора

Все вышеописанные радиодетали можно без проблем купить в любом радиомагазине. Мы же для сборки нашего регулятора возьмем их из регулятора оборотов вышедшей из строя орбитальной шлифовальной машинки (как раз эта плата уцелела и все компоненты рабочие). Вот она.
регулятор оборотов
Отсюда мы заберем симистор, динистор, конденсатор и резистор. Потенциометр возьмем другой, так как имеющуюся «крутилку» вмонтировать в розетку будет невозможно. Вот что остается.
симистор, динистор, конденсатор и резистор
На фото можно видеть не один резистор, а два. Изначально регулятор был собран с использованием и второго резистора, но после тестирования прибора он был убран. Почему – сказано ниже.
Итак, имеем:

  1. Симистор BTA06-600C. Такая маркировка означает, что он может пропускать ток силой до 6 А и рассчитан на напряжение до 600 В. Деталь можно заменить на аналогичные, но с учетом этих двух характеристик. Поскольку регулятор у нас для сетевого напряжения, то и симистор должен быть рассчитан на соответствующее напряжение. Чтобы он не перегорел от всплесков напряжения в сети, берем с запасом. Сила тока рассчитывается исходя из мощности подключаемой к регулятору нагрузки. Для этого мощность нагрузки надо разделить на напряжение в сети. Например, для паяльника на 80 Вт максимальная сила тока, которую будет пропускать симистор, составит всего 0,35 А. Как видим, нашего 6-амперного симистора хватит с большим запасом.
  2. Динистор DB3. Через него текут минимальные токи, да и напряжение сравнительно невысокое. Потому можно взять практически любой похожий.
  3. Конденсатор. Пленочный, неполярный, рассчитанный на напряжение более 250 В. Емкость – 0,1 микрофарад (или 100 нанофарад, что одно и то же). Обозначается такой кодом 104. Максимальное напряжение тоже обязательно должно быть указано. Если такой надписи нет, то конденсатор использовать нельзя. Электролитические полярные конденсаторы тоже использовать нельзя.
  4. Резистор R1. Постоянный. Рассчитанный на рассеиваемую мощность 1 Вт. Сопротивление в данном случае 68 кОм. Хотя во многих схемах используется резистор с гораздо меньшим сопротивлением. Почему так, станет понятно во время испытаний. У начинающих радиолюбителей может возникнуть вопрос – зачем нужен этот резистор. А нужен он для того, чтобы ограничивать ток, когда ручка потенциометра выкручена так, что его сопротивление равно или близко к нулю. Если бы не было R1, то весь ток потек бы через RV1, и он бы перегорел от перегрева.
  5. Переменный резистор. В распаянной схеме стоял на 250 кОм. Подходящего с таким номиналом не нашлось, потому был взят на 470 кОм. К нему параллельно был припаян постоянный резистор на 330 кОм, в результате чего переменный стал примерно на 250 кОм.
  6. Маленький резистор (на фото). В разобранной схеме был на 330 кОм, и был впаян параллельно переменному резистору. Позже его пришлось удалить, так как из-за него был высокий минимальный порог регулируемого напряжения.

Остановимся немного на резисторах, так как от них зависит регулировочный диапазон в данной схеме. Начнем с R1. Чем меньше его сопротивление, тем большее максимальное напряжение мы сможем получить на выходе регулятора. Однако при уменьшении его сопротивления возрастает ток, протекающий через него во время заряда конденсатора. Соответственно, резистор может нагреваться. А потому надо брать уже не на 1 Вт, а на 2 Вт.

Переменный резистор или потенциометр. От его номинала зависит минимальное напряжение, до которого будет снижаться сетевое при помощи регулятора. Так, если взять на 250 кОм, то напряжение удастся понизить примерно до 50-70 В (при R1 68 кОм). Если же взять на 500 кОм, то напряжение получится понизить еще.

Кроме радиодеталей для сборки регулятора понадобится розетка, отрезок кабеля и вилка.
розетка, вилка и кабель

Розетку неплохо было бы закрепить на каком-либо основании, например, на деревянной колодке. Хотя при стационарном использовании ее можно пристроить и на стене, и на столе, и под ним.

Сборка регулятора и некоторые особенности устройства

Начинать сборку желательно с самого большого компонента. В данном случае им является переменный резистор. Как видно, даже штатная начинка розетки не позволяет использовать габаритный потенциометр. Кроме того, нам же внутрь еще парочку деталей запихнуть надо. В итоге, после нескольких примерок переменный резистор было решено закрепить следующим образом.
переменный резистор
Лучше, конечно, было бы устанавливать его в ту часть розетки, где будет вся остальная начинка. А так придется соединять схему проводами достаточной для сборки и разборки длины.

Далее идет вторая по размерам деталь – симистор. На фото он установлен на небольшой радиатор. Но это не для охлаждения, так как мощность, которую мы будем питать от регулятора, всего 80 Вт. Однако с радиатором симистор встал на свое место, как родной, и крепить его никак не пришлось.

Следующим шагом идет пайка динистора. Согласно схеме – он находится одним выводом на управляющем выводе симистора. В этом симисторе управляющим является крайний правый. При распайке обвязки симистора важно ничего не перепутать. Потому, если вы используете другие компоненты (аналоги), уточняйте назначение выводов.

Далее один из проводов с вилки напрямую вставляется в один из контактов розетки. Второй же мы будем «разрывать» нашей схемой. На фото выше показано, как красным проводом соединен регулируемый контакт розетки с одной из силовых ножек симистора. Таковых у него две. И обе они равнозначные. Потому неважно, на какой из этих двух ножек будет «сидеть» наша схема.
соединение регулируемого контакта с симистором

Теперь свободный вывод динистора соединяем конденсатором с тем выводом симистора, который мы красным проводом подвели к контакту розетки. Сюда же (к динистору и конденсатору) паяем провод, который пойдет на один из выводов переменного резистора. Кстати, две из трех ножек переменного резистора необходимо предварительно соединить. Как на схеме.

Далее к проводу, который входит в регулируемый контакт розетки, паяется резистор (в нашем случае на 68 кОм 1 Вт). Остается только соединить свободный вывод переменного резистора с постоянным, соединив их, таким образом, последовательно.

Все. Регулятор готов. На фото, правда, есть еще маленький резистор. Он соединен параллельно с переменным резистором, как и было в оригинале на плате шлифовальной машинки. Однако после теста он был убран, так как из-за него напряжение удавалось понижать только до 120 В.

Проверка регулятора мощности

После сборки симисторного регулятора его необходимо протестировать. Это позволит:

  1. Убедиться в его работоспособности.
  2. «На ходу» скорректировать диапазон регулировки напряжения.

Для проверки нужен мультиметр и нагрузка. Мультиметр необходимо подсоединить к контактам регулируемой розетки, предварительно включив на нем режим измерения переменного напряжения более 300 В (в дешевых приборах, как на фото, это 750 В). Нагрузку нужно подключать обязательно. Иначе ток через нашу схему не пойдет, и ее работы мы, соответственно, не увидим.

⚠ Внимание! Компоненты схемы и штатная начинка розетки находятся под опасным для жизни напряжением. Потому ни в коем случае нельзя прикасаться к радиодеталям, оголенным проводам и так далее. Браться руками можно только за пластиковый корпус розетки и ручку потенциометра.

Чтобы не рисковать, проверить прибор можно и в собранном состоянии. Для этого в нашу регулируемую розетку включаем тройник или удлинитель с двумя розетками. В одну из них включаем нагрузку (паяльник, например), а во второй измеряем щупами мультиметра напряжение.

Проверка на разобранном регуляторе выглядит следующим образом.
Проверка на разобранном регуляторе

Здесь потенциометр установлен на максимальное сопротивление. Напряжение на выходе регулятора из 230 В снизилось до 59 В. Справа от вольтметра другой мультиметр, включенный на измерение температуры. Его датчик (термопара) прикладывается к жалу паяльника. Как видно по фото, при подаче на 80-ваттный паяльник всего 59 В максимальная температура его жала составила примерно 200 °C. Этого вполне достаточно, чтобы паять при помощи припоя ПОС-60. Для пайки более тугоплавких привоев напряжение следует повысить, и жало разогреется до большей температуры.

Минимальный порог напряжения на выходе можно снизить еще больше. Для этого надо заменить резистор RV1, установив вместо 250-килоомного, например, на 500 кОм. В результате мы сможем еще больше ограничить ток через конденсатор, он будет заряжаться еще медленнее, динистор будет открываться еще позже, а симистор будет в открытом состоянии еще меньший промежуток времени. Однако это может привести к нестабильной работе регулятора, что потребует усложнения схемы путем добавки в нее еще одного конденсатора.
максимальное напряжение

А это уже максимальное напряжение, которое получается на выходе нашего регулятора. Температура на кончике жала паяльника более 300 градусов (грелся еще, но не стал мучить термопару). Когда этот паяльник включен в розетку 230 В напрямую – он раскаляется и до 400 градусов, что никуда не годится.

Максимальное напряжение на выходе регулятора можно повысить. Для этого надо уменьшить сопротивление резистора R1, заменив его на другой. При этом следует помнить, что через него потечет больший ток, и на нем будет выделяться больше тепла. Соответственно, если взять резистор R1 сопротивлением 5-10 кОм, то его рассеиваемая мощность должна быть уже не 1 Вт, а 2Вт.

В данном случае это не нужно, так как и при 185 вольтах жало перегревается очень сильно.
При подключении к такому регулятору паяльника, если прислушаться, то можно различить тихое жужжание. Это нормально, и паяльнику никак не навредит.

А вот если подключить к нашему регулятору лампу накаливания, то вместо жужжания мы увидим мерцание. Чем меньше будет напряжение и яркость лампы, тем мерцания станут более заметными. Для лампы это не вредно, а вот для нашего зрения – еще как. Потому использовать данную схему в качестве диммера для ламп не стоит. Для этого есть другие схемы, ненамного сложнее этой.

Завершение

В завершение не лишним будет напомнить о нескольких вещах. Во-первых, соблюдайте осторожность при тестировании регулятора. Там высокое напряжение, способное если не убить человека, то привести к ожогам и болезненным ощущениям. Во-вторых, будьте внимательны при подборе симистора из аналогов. Учитывайте мощность нагрузки, ток и вольтаж. В-третьих, при изготовлении регуляторов по этой схеме для более мощной нагрузки от навесного монтажа стоит отказаться. Детали надо запаять на плате, и вынести ее в отдельный корпус.

Источник: knigaelektrika.ru

Для приличного качества проведения паяльных работ, домашнему мастеру, и тем более радиолюбителю, пригодится простой и удобный регулятор температуры жала паяльника. Впервые схему устройства, я увидел в журнале «Юный техник» начала 80-х, и собрав несколько экземпляров, использую до сих пор.

Для сборки устройства потребуются:
-диод 1N4007 или любой другой, с допустимым током 1А и напряжением 400 – 600В.
-тиристор КУ101Г.
-электролитический конденсатор 4,7 микрофарад с рабочим напряжением 50 – 100В.
-сопротивление 27 – 33 килоом с допустимой мощностью 0,25 – 0,5 ватт.
-переменный резистор 30 или 47 килоом СП-1, с линейной характеристикой.

Для простоты и наглядности я нарисовал размещение и взаимное соединение деталей.

Перед сборкой необходимо изолировать и отформовать выводы деталей. На выводы тиристора надеваем изоляционные трубочки длинной 20мм., на выводы диода и резистора 5мм. Для наглядности можно использовать цветную ПВХ изоляцию, снятую с подходящих проводов, или присаживаем термоусадку. Стараясь не повредить изоляцию загибаем проводники, руководствуясь рисунком и фотографиями.

Все детали монтируются на выводах переменного резистора, соединяясь в схему четырьмя точками пайки. Заводим проводники компонентов в отверстия на выводах переменного резистора всё подравниваем и припаиваем. Укорачиваем выводы радиоэлементов. Плюсовой вывод конденсатора, управляющий электрод тиристора, вывод сопротивления, соединяем вместе и фиксируем пайкой. Корпус тиристора является анодом, для безопасности, изолируем его.

Для придания конструкции законченного вида, удобно воспользоваться корпусом от блока питания с сетевой вилкой.

На верхней грани корпуса сверлим отверстие диаметром 10 мм. В отверстие вставляем резьбовую часть переменного резистора и фиксируем его гайкой.

Для подключения нагрузки я использовал два разъёма с отверстиями под штыри диаметром 4 мм. На корпусе размечаем центры отверстий, с расстоянием между ними 19 мм. В просверленные отверстия диаметром 10 мм. вставляем разъёмы, фиксируем гайками. Соединяем вилку на корпусе, выходные разъёмы и собранную схему, места пайки можно защитить термоусадкой. Для переменного резистора необходимо подобрать ручку из изоляционного материала такой формы и размера, чтобы закрыть ось и гайку. Собираем корпус, надёжно фиксируем ручку регулятора.

Проверяем регулятор, подключив в качестве нагрузки лампу накаливания 20 — 40 ватт. Вращая ручку, убеждаемся в плавном изменении яркости лампы, от половины яркости до полного накала.

При работе с мягкими припоями (например ПОС-61), паяльником ЭПСН 25, достаточно 75% мощности (положение ручки регулятора примерно посередине хода). Важно: на всех элементах схемы присутствует напряжение питающей сети 220 вольт! Необходимо соблюдать меры электробезопасности.

Источник: SdelaySam-SvoimiRukami.ru

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%
Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Схема простого регулятора мощности на симисторе с питанием от 220 В
Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью
Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя
Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки
Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Источник: www.asutpp.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.