Простая схема бп для низковольтного паяльника


Если вы читаете эту статью, значит объяснять, для чего нужен регулятор нагрева паяльника вам не нужно. Конечно, покупать паяльную станцию в которой уже имеется устройство регулирования накладно, а собрать регулятор самому многим из вас не составит больших усилий, поэтому в этой статье мы решили поделиться с вами схемками самых простых устройств, предназначенных для этих целей.

Основным регулирующим элементом многих схем является тиристор или симистор. Давайте рассмотрим несколько схем построенных на этой элементной базе.

Вариант 1.

Ниже представлена первая схема регулятора, как видите проще наверно уже и некуда. Диодный мост собран на диодах Д226, в диагональ моста включен тиристор КУ202Н со своими цепями управления.

Вот еще одна подобная схема, которую можно встретить в интернете, но на ней мы останавливаться не будем.

Для индикации наличия напряжения можно дополнить регулятор светодиодом, подключение которого показано на следующем рисунке.


Перед диодным мостом по питанию можно врезать выключатель. Если будете применять в качестве выключателя тумблер, проследите, чтобы его контакты могли выдерживать ток нагрузки.

Вариант 2.

Этот регулятор построен на симисторе ВТА 16-600. Отличие от предыдущего варианта в том, что в цепи управляющего электрода симистора стоит неоновая лампа. Если остановите выбор на этом регуляторе, то неонку нужно будет выбрать с невысоким напряжением пробоя, от этого будет зависеть плавность регулировки мощности паяльника. Неоновую лампочку можно выкусить из стартера, применяемого в светильниках ЛДС. Емкость С1 – керамическая на U=400В. Резистором R4 на схеме обозначена нагрузка, которую и будем регулировать.

Проверка работы регулятора осуществлялась с применением обычного настольного светильника, смотри фото ниже.

Если использовать данный регулятор для паяльника мощностью не выше 100 Вт, то симистор не нуждается в установке на радиатор.

Вариант 3.

Эта схема чуть сложнее предыдущих, в ней присутствует элемент логики (счетчик К561ИЕ8), применение которого позволило регулятору иметь 9 фиксированных положений, т.е. 9 ступеней регулирования. Нагрузкой так же управляет тиристор. После диодного моста стоит обычный параметрический стабилизатор, с которого берется питание для микросхемы. Диоды для выпрямительного моста выбирайте такие, чтобы их мощность соответствовала той нагрузке, которую вы будете регулировать.

Схема устройства показана на рисунке ниже:


Спавочный материал по микросхеме К561ИЕ8:

Таблица функционирования микросхемы К561ИЕ8:

Диаграмма работы микросхемы К561ИЕ8:

Вариант 4.

Ну и последний вариант, который мы сейчас рассмотрим, как самому сделать паяльную станцию с функцией регулирования мощности паяльника.

Схема довольно распространенная, не сложная, многими уже не раз повторяемая, никаких дефицитных деталей, дополнена светодиодом, который показывает, включен или выключен регулятор, и узлом визуального контроля установленной мощности. Выходное напряжение от 130 до 220 вольт.

Так выглядит плата собранного регулятора:

Доработанная печатная плата выглядит вот так:

В качестве индикатора была использована головка М68501, такие раньше стояли в магнитофонах. Головку было решено немного доработать, в правом верхнем углу установили светодиод, он и включение/отключение покажет, и шкалу мал-мал подсветит.

Дело осталось за корпусом. Его было решено сделать из пластика (вспененного полистирола), который применяется для изготовления всякого рода реклам, легко режется, хорошо обрабатывается, склеивается намертво, краска ровно ложится. Вырезаем заготовки, зачищаем края, клеим “космофеном” (клей для пластика).

Внешний вид склеенной коробки:

Красим, собираем “потроха”, получаем чтото типа такого:

Ну и в заключение, если вы собираетесь использовать с данным регулятором паяльники разной мощности, то в вышеприведенной схеме стоит заменить узел визуального контроля на такой:


С предыдущим вариантом схемы индикатора (которая без транзистора), измерялся ток потребления паяльника, а при подключении паяльников разной мощности, показания различные, а это не есть хорошо.

Вместо импортной диодной сборки 1N4007 можно поставить отечественную , например КЦ405а.

Источник: www.komitart.ru

↑ Принципиальная схема

Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Его особенностью является то, что переключение транзисторов происходят в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.

Началом возникновения генерации можно управлять с помощью RC цепи, работающей на однопереходной транзистор или его аналог, который выдает короткий импульс для первоначального запуска автогенератора в начале каждого полупериода сети. При этом на выходе образуются пакеты высокочастотных импульсов, длительность которых и определяет выходное напряжение автогенератора.

Применение аналога однопереходного транзистора связано с тем, что с нагрузкой или без нее программируемый однопереходный транзистор (ПОПТ) выдает только один импульс в течение полупериода и переходит в режим удержания.


↑ Оптоэлектрический преобразователь

К сожалению, однопереходной транзистор КТ117 выдает серию импульсов при работе без нагрузки, которые плохо влияют на работу выходного каскада электронного трансформатора.

После ряда экспериментов в качестве преобразователя импульсного выходного напряжения в значение эффективного для регулирования был применен оптоэлектрический преобразователь, состоящий из лампы накаливания, двуханодного стабилитрона, регулировочного резистора и фоторезистора. При этом, благодаря инерционности нити накала лампы, получилось прекрасное интегрирование значения выходного напряжения для цепей управления.

В первом варианте схемы, была сделана попытка применить TL431 для стабилизации выходного напряжения, но попытка потерпела неудачу (паразитные колебания, которые я не смог устранить).

↑ Стабилизация

При увеличении выходного напряжения зажигается лампа Л1, и напряжение на затворе VT1 снижается, что увеличивает время заряда конденсатора C3 и выходное напряжение снижается. При уменьшении напряжения процесс протекает в обратном порядке.

Для нормальной работы преобразователь должен быть нагружен, иначе прерывается обратная связь по току нагрузки, протекающему через трансформатор T1, и генерация может не возникнуть или будет неустойчивой.

Токовый трансформатор T1 работает в режиме насыщения и определяет частоту генерации. Поэтому число витков катушки связи подбирается по замедлению роста напряжения на базовой обмотке. После этого рассчитывается число витков базовой обмотки так, чтобы на ней было напряжение около 2 — 3 Вольт. Затем рассчитывается сопротивления в базовых цепях из расчета величины базового тока 0,1 — 0,3А.


↑ Описание работы схемы

Питание осуществляется от сети 220 Вольт.
На входе стоит помехоподавляющий конденсатор C1 и защитный резистор R1, который работает как предохранитель.

Транзистор VT1 управляет током заряда времязадающего конденсатора C3. Управление происходит с помощью фоторезистивной пары Л1 и R11.

Аналог однопереходного транзистора собран на VT2 и VT3. Короткие импульсы запуска с аналога через резистор R18 поступают на базу нижнего плеча силового ключа VT5 и VT4 и вызывают начало генерации в каждом полупериоде сети.

К силовым ключам, через обмотку обратной связи трансформатора Т1, подключен выходной трансформатор Т2.
Трансформатор T1 работает в режиме насыщения и от его параметров зависит частота генерации.
Трансформатор T2 работает без захода в режим насыщения.

Диоды D6 и D11 служат для обеспечения полного разряда конденсатора C3 при прохождении напряжения питающей сети через ноль. При этом гарантируется стабильное время заряда C3 с начала следующего полупериода.

Двуханодный стабилитрон D10 делает регулировочную характеристику более жесткой, чем повышает стабильность выходного напряжения.

Для питания встроенного вольтметра сделана отдельная обмотка, которая питает вольтметр, и с нее же снимается значение выходного напряжения и после интегрирования поступает на измерительный вход вольтметра.

С диодного моста Br1 выпрямленное и сглаженное напряжение поступает на гнезда 50 Вольт для питания микродрели.

Отдельная обмотка на 5 Вольт (эффективного значения) и ток до 5А предназначена для питания «обжигалки» для снятия изоляции проводов.

↑ Конструкция и детали


Конструктивно все элементы схемы расположены на печатной плате, а выходные гнезда, выключатель, вольтметр и регулятор напряжения расположены на передней панели. Передняя панель и плата скреплены между собой стойками длиной 35 мм с резьбой М3.

Корпус сделан из тонкой жести.

↑ Оптоэлектрический преобразователь

представляет собой черную трубку от кабеля, в которую с одной стороны вставлена и закреплена миниатюрная лампочка, а с другой фоторезистор. Расстояние между ними примерно 3 мм (разделены маленьким отрезком трубки ПХВ). Черная трубка не пропускает внешнего света и на концах прошита нитками.

Лампочка Л1 — миниатюрная с гибкими выводами от подсветки в автомобильных магнитолах.

Фоторезистор применен с темновым сопротивлением 1М или больше.

К силовым транзисторам прикручен небольшой радиатор (2,5×4 см), который практически не греется при работе (температура около 40 градусов).

Конденсаторы C8 и C9 на напряжение 250 Вольт, а C7 на напряжение 63 вольта.
Резистор R2 МЛТ-2, 62 ком 2 вт.
Резистор R13 — ППБ-2А 680 ом.


Двуханодный стабилитрон D10 может быть заменен двумя одинаковыми встречно включенными стабилитронами.

↑ Моточные изделия

Моточные данные трансформаторов указаны на принципиальной схеме.
Сердечник трансформатора T1 взят от энергосберегающей лампы. Обмотки 2×2 витков и 3 витка.
Число витков зависит от сердечника трансформатора T1 и уточняется при настройке.

↑ Встроенный вольтметр

Для измерения выходного напряжения применен миниатюрный вольтметр на семисегментном LED индикаторе и PIC16F684 [2], который плотно вставлен в лицевую панель.

↑ Налаживание

Число витков трансформатора T1 уточняется при настройке, чтобы получить частоту генерации примерно 35 — 55 кГц при работе блока на нагрузку мощностью не менее 10 Вт.
R5 — определяет минимальное выходное напряжение.

↑ Осциллограммы выходных напряжений:

↑ Напряжение 12 Вольт, развертка 2 мс/дел.

↑ Напряжение 24 Вольт, развертка 2 мс/дел.

↑ Напряжение 38 Вольт, развертка 2 мс/дел.

↑ Высокочастотное заполнение, развертка 20 мксек/дел.

↑ Файлы

▼ Плата БП, плата вольтметра, лицевая панель.7z 🕗 19/07/19 ⚖️ 23,57 Kb ⇣ 12

↑ Итоги


Получился прибор легкий, стабилизированный, обеспечивающий безопасную работу.
Из замеченных недостатков следует отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех и наводок.

Источник: datagor.ru

Как сделать надёжный регулятор мощности для паяльника своими руками

Регуляторы мощности помогают управлять степенью нагрева паяльника.

Подключение готового регулятора мощности нагрева

Если у вас нет возможности или желания возиться с изготовлением платы и электронными компонентами, то можете купить готовый регулятор мощности в магазине радиотоваров или заказать в интернете. Регулятор ещё называют диммером. В зависимости от мощности, устройство стоит 100–200 рублей. Возможно, после покупки вам придётся немного доработать его. Диммеры до 1000 Вт обычно продаются без радиатора охлаждения.

Регулятор мощности без радиатора

А устройства от 1000 до 2000 Вт с маленьким радиатором.

Регулятор мощности с маленьким радиатором


И только более мощные продаются с большими радиаторами. Но на самом деле, диммер от 500 Вт должен иметь небольшой радиатор охлаждения, а от 1500 Вт уже устанавливают крупные алюминиевые пластины.

Китайский регулятор мощности с большим радиатором

Учтите это при подключении прибора. Если необходимо, установите мощный радиатор охлаждения.

Доработанный регулятор мощности

Для правильного подключения устройства к цепи посмотрите на обратную сторону печатной платы. Там указаны клеммы входа IN и выхода OUT. Вход подключается к сетевой розетке, а выход к паяльнику.

Обозначение клемм входа и выхода на плате

Монтаж регулятора производится разными способами. Для их осуществления не нужны специальные знания, а из инструментов вам понадобятся только нож, дрель и отвёртка. Например, можно включить диммер в шнур питания паяльника. Это самый лёгкий вариант.

  1. Разрежьте кабель паяльника на две части.
  2. Подключите оба провода к клеммам платы. Отрезок с вилкой прикрутите ко входу.
  3. Подберите подходящий по размеру пластиковый корпус, проделайте в нём два отверстия и установите туда регулятор.

Ещё один простой способ: можно установить регулятор и розетку на деревянную подставку.

  1. Прикрутите к деревянной дощечке плату и розетку с коротким проводом.
  2. Возьмите вилку с двухжильным шнуром и подключите её ко входу платы.
  3. Розетку подключите к выходу.
  4. Вставьте вилку в сетевую розетку.

К такому регулятору можно подключать не только паяльник. Теперь рассмотрим более сложный, но компактный вариант.

  1. Возьмите большую вилку от ненужного блока питания.
  2. Извлеките из неё имеющуюся плату с электронными компонентами.
  3. Просверлите отверстия для ручки диммера и двух клемм под входную вилку. Клеммы продаются в радиомагазине.
  4. Если ваш регулятор со световыми индикаторами, то для них тоже сделайте отверстия.
  5. Установите в корпус вилки диммер и клеммы.
  6. Возьмите переносную розетку и включите в сеть. В неё вставьте вилку с регулятором.

Это устройство, как и предыдущее, позволяет подключать разные приборы.

Самодельный двухступенчатый регулятор температуры

Самый простой регулятор мощности — двухступенчатый. Он позволяет переключаться между двумя значениями: максимальным и половиной от максимального.

Двухступенчатый регулятор мощности

Когда цепь в разомкнутом состоянии, ток протекает через диод VD1. Выходное напряжение 110 В. При замыкании цепи выключателем S1 ток обходит диод, так как он подключён параллельно и на выходе получается напряжение 220 В. Диод подбирайте в соответствии с мощностью вашего паяльника. Выходная мощность регулятора рассчитывается по формуле: P = I * 220, где I — ток диода. Например, для диода с током 0,3 А мощность считается так: 0,3 * 220 = 66 Вт.

Так как наш блок состоит всего из двух элементов, то его можно разместить в корпусе паяльника с помощью навесного монтажа.

  1. Припаяйте параллельно детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов.
  2. Соедините с цепью.
  3. Залейте всё эпоксидной смолой, которая служит изолятором и защитой от смещений.
  4. В рукояти сделайте отверстие под кнопку.

Если корпус очень мал, то воспользуйтесь переключателем для светильника. Вмонтируйте его в шнур паяльника и вставьте параллельно выключателю диод.

Переключатель для светильника

На симисторе (с индикатором)

Рассмотрим простую схему регулятора на симисторе и изготовим печатную плату для него.

Регулятор мощности на симисторе

Изготовление печатной платы

Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.

  1. Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте.
  2. Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом.
  3. Далее, приступаем к травлению. Можно купить хлорное железо, но после него плохо отмывается раковина. Если случайно капните на одежду, останутся пятна, которые невозможно до конца вывести. Поэтому будем использовать безопасный и дешёвый метод. Подготовьте пластиковую ёмкость для раствора. Влейте перекись водорода 100 мл. Добавьте пол столовой ложки соли и пакетик лимонной кислоты до 50 г. Раствор делается без воды. С пропорциями можно экспериментировать. И всегда делайте свежий раствор. Медь должна вся стравиться. На это уходит около часа.
  4. Промойте плату под струёй колодной воды. Высушите. Просверлите отверстия.
  5. Протрите плату спирто — канифольным флюсом или обычным раствором канифоли в изопропиловом спирте. Возьмите немного припоя и залудите дорожки.

Для нанесения схемы на текстолит можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.

Монтаж

Подготовьте все необходимые компоненты для монтажа:

  • катушка с припоем;
  • штырьки в плату;
  • симистор bta16;
  • конденсатор на 100 нФ;
  • постоянный резистор на 2 кОм;
  • динистор db3;
  • переменный резистор с линейной зависимостью на 500 кОм.

Приступайте к монтажу платы.

  1. Откусите четыре штырька и впаяйте их в плату.
  2. Установите динистор и все остальные детали, кроме переменного резистора. Симистор припаивайте последним.
  3. Возьмите иглу и щёточку. Почистьте промежутки между дорожками, чтобы убрать возможное замыкание.
  4. Возьмите алюминиевый радиатор для охлаждения симистора. Просверлите в нём отверстие. Симистор свободным концом с отверстием будет закреплён на алюминиевый радиатор для охлаждения.
  5. Мелкой наждачной бумагой зачистьте область крепления элемента. Возьмите теплопроводящую пасту марки КПТ-8 и нанесите небольшое количество пасты на радиатор.
  6. Закрепите симистор винтом и гайкой.
  7. Аккуратно отогните плату так, чтобы симистор принял вертикальное положение по отношению к ней. Для того чтобы конструкция стала компактной.
  8. Так как все детали нашего устройства находятся под напряжением сети, для регулировки будем применять ручку из изолирующего материала. Это очень важно. Металлические держатели здесь применять опасно для жизни. Оденьте пластмассовую ручку на переменный резистор.
  9. Кусочком провода соедините крайний и средний выводы резистора.
  10. Теперь к крайним выводам припаяйте два провода. Противоположные концы проводов соедините с соответствующими выводами на плате.
  11. Возьмите розетку. Снимите верхнюю крышку. Подсоедините два провода.
  12. Припаяйте к плате один провод от розетки.
  13. А второй подключите к проводу двухжильного сетевого кабеля с вилкой. У сетевого шнура осталась одна свободная жила. Её припаяйте к соответствующему контакту на печатной плате.

Фактически получается, что регулятор включён последовательно в цепь питания нагрузки.

Схема подключения регулятора к цепи

Если захотите установить светодиодный индикатор в регулятор мощности, то используйте другую схему.

Схема регулятора мощности со светодиодным индикатором

Здесь добавлены диоды:

  • VD 1 — диод 1N4148;
  • VD 2 — светодиод (индикация работы).

Схема с симистором слишком громоздкая для включения в рукоять паяльника, как в случае с двухступенчатым регулятором, поэтому её надо подключить снаружи.

Установка конструкции в отдельный корпус

Все элементы этого устройства находятся под напряжением сети, поэтому нельзя использовать металлический корпус.

  1. Возьмите пластиковую коробочку. Наметьте, как в ней будет размещаться плата с радиатором и с какой стороны подключать сетевой шнур. Просверлите три отверстия. Два крайних нужны для крепления розетки, а среднее для радиатора. Головка винта, к которому будет крепиться радиатор, должна быть спрятана под розеткой по причине электробезопасности. Радиатор имеет контакт со схемой, а она имеет непосредственный контакт с сетью.
  2. Сделайте ещё одно отверстие сбоку корпуса для сетевого кабеля.
  3. Установите винт крепления радиатора. С обратной стороны наденьте шайбу. Прикрутите радиатор.
  4. Просверлите отверстие соответствующего размера под потенциометр, то есть под ручку переменного резистора. Вставьте деталь в корпус и закрепите штатной гайкой.
  5. Наложите розетку на корпус и просверлите два отверстия под провода.
  6. Закрепите розетку двумя гайками на М3. Вставьте провода в отверстия и закрутите крышку винтом.
  7. Проложите провода внутри корпуса. Один из них припаяйте к плате.
  8. Другой к жиле сетевого кабеля, который предварительно вставьте в пластиковый корпус регулятора.
  9. Заизолируйте место соединения изолентой.
  10. Свободный провод шнура соедините с платой.
  11. Закройте корпус крышечкой и закрутите винтами.

Регулятор мощности включается в сеть, а паяльник — в розетку регулятора.

Видео: монтаж схемы регулятора на симисторе и сборка в корпусе

На тиристоре

Регулятор мощности можно сделать на тиристоре bt169d.

Регулятор мощности на тиристоре

Компоненты схемы:

  • VS1 — тиристор BT169D;
  • VD1 — диод 1N4007;
  • R1 — резистор 220k;
  • R3 — резистор 1k;
  • R4 — резистор 30k;
  • R5 — резистор 470E;
  • C1 — конденсатор 0,1mkF.

Резисторы R4 и R5 являются делителями напряжения. Они снижают сигнал, так как тиристор bt169d маломощный и очень чувствителен. Схема собирается аналогично регулятору на симисторе. Так как тиристор слабый, он не будет перегреваться. Поэтому радиатор охлаждения не нужен. Такую схему можно вмонтировать в небольшой коробок без розетки и соединить последовательно с проводом паяльника.

Регулятор мощности в маленьком корпусе

Схема на мощном тиристоре

Если в предыдущей схеме заменить тиристор bt169d на более мощный ку202н и убрать резистор R5, то выходная мощность регулятора повысится. Такой регулятор собирается с радиатором на тиристоре.

Схема на мощном тиристоре

На микроконтроллере с индикацией

Простой регулятор мощности со световой индикацией можно сделать на микроконтроллере.

Схема регулятора на микроконтроллере ATmega851

Подготовьте следующие компоненты для его сборки:

  • микроконтроллер ATmega8515;
  • тактовая кнопка — 2шт;
  • резистор на 4,7кОм — 2шт;
  • резистор на 200 Ом-1шт;
  • панелька под микросхему DIP40;
  • любой светодиод-1шт;
  • стабилизированный источник питания для МК на 3–5В.

С помощью кнопок S3 и S4 будет меняться мощность и яркость светодиода. Схема собирается аналогично предыдущим.

Если вы хотите, чтобы прибор показывал процент выдаваемой мощности вместо простого светодиода, то используйте другую схему и соответствующие компоненты, включая числовой индикатор.

Схема регулятора на микроконтроллере PIC16F1823

Схему можно вмонтировать в розетку.

Регулятор на микроконтроллере в розетке

Проверка и регулировка схемы блока терморегулятора

Перед подключением блока к инструменту испытайте его.

  1. Возьмите собранную схему.
  2. Соедините её с сетевым проводом.
  3. Подключите лампу на 220 к плате и симистору или тиристору. В зависимости от вашей схемы.
  4. Сетевой провод воткните в розетку.
  5. Вращайте ручку переменного резистора. Лампа должна менять степень накаливания.

Схема с микроконтроллером проверяется аналогично. Только на цифровом индикаторе ещё будет отображаться процент выходной мощности.

Для регулировки схемы меняйте резисторы. Чем больше сопротивление, тем меньше мощность.

Нередко приходится ремонтировать или дорабатывать разные приборы, используя паяльник. От качества пайки зависит работа этих устройств. Если вы приобрели паяльник без регулятора мощности, то обязательно установите его. При постоянном перегреве пострадают не только электронные компоненты, но и ваш паяльник.

Источник: postroika.biz


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.